Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Genom Precis Med ; 16(3): 224-231, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165897

RESUMO

BACKGROUND: Known genetic causes of congenital heart disease (CHD) explain <40% of CHD cases, and interpreting the clinical significance of variants with uncertain functional impact remains challenging. We aim to improve diagnostic classification of variants in patients with CHD by assessing the impact of noncanonical splice region variants on RNA splicing. METHODS: We tested de novo variants from trio studies of 2649 CHD probands and their parents, as well as rare (allele frequency, <2×10-6) variants from 4472 CHD probands in the Pediatric Cardiac Genetics Consortium through a combined computational and in vitro approach. RESULTS: We identified 53 de novo and 74 rare variants in CHD cases that alter splicing and thus are loss of function. Of these, 77 variants are in known dominant, recessive, and candidate CHD genes, including KMT2D and RBFOX2. In 1 case, we confirmed the variant's predicted impact on RNA splicing in RNA transcripts from the proband's cardiac tissue. Two probands were found to have 2 loss-of-function variants for recessive CHD genes HECTD1 and DYNC2H1. In addition, SpliceAI-a predictive algorithm for altered RNA splicing-has a positive predictive value of ≈93% in our cohort. CONCLUSIONS: Through assessment of RNA splicing, we identified a new loss-of-function variant within a CHD gene in 78 probands, of whom 69 (1.5%; n=4472) did not have a previously established genetic explanation for CHD. Identification of splice-altering variants improves diagnostic classification and genetic diagnoses for CHD. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT01196182.


Assuntos
Cardiopatias Congênitas , RNA , Criança , Humanos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Splicing de RNA , Frequência do Gene , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
2.
PLoS Genet ; 16(11): e1009189, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216750

RESUMO

Although DNA methylation is the best characterized epigenetic mark, the mechanism by which it is targeted to specific regions in the genome remains unclear. Recent studies have revealed that local DNA methylation profiles might be dictated by cis-regulatory DNA sequences that mainly operate via DNA-binding factors. Consistent with this finding, we have recently shown that disruption of CTCF-binding sites by rare single nucleotide variants (SNVs) can underlie cis-linked DNA methylation changes in patients with congenital anomalies. These data raise the hypothesis that rare genetic variation at transcription factor binding sites (TFBSs) might contribute to local DNA methylation patterning. In this work, by combining blood genome-wide DNA methylation profiles, whole genome sequencing-derived SNVs from 247 unrelated individuals along with 133 predicted TFBS motifs derived from ENCODE ChIP-Seq data, we observed an association between the disruption of binding sites for multiple TFs by rare SNVs and extreme DNA methylation values at both local and, to a lesser extent, distant CpGs. While the majority of these changes affected only single CpGs, 24% were associated with multiple outlier CpGs within ±1kb of the disrupted TFBS. Interestingly, disruption of functionally constrained sites within TF motifs lead to larger DNA methylation changes at nearby CpG sites. Altogether, these findings suggest that rare SNVs at TFBS negatively influence TF-DNA binding, which can lead to an altered local DNA methylation profile. Furthermore, subsequent integration of DNA methylation and RNA-Seq profiles from cardiac tissues enabled us to observe an association between rare SNV-directed DNA methylation and outlier expression of nearby genes. In conclusion, our findings not only provide insights into the effect of rare genetic variation at TFBS on shaping local DNA methylation and its consequences on genome regulation, but also provide a rationale to incorporate DNA methylation data to interpret the functional role of rare variants.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epigênese Genética , Genoma Humano/genética , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Sítios de Ligação/genética , Criança , Pré-Escolar , Sequenciamento de Cromatina por Imunoprecipitação , Estudos de Coortes , Feminino , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Adulto Jovem
3.
Nat Commun ; 7: 12824, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670201

RESUMO

Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression-this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression.


Assuntos
Cardiopatias Congênitas/metabolismo , RNA/metabolismo , Adolescente , Adulto , Idoso , Alelos , Aorta/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feto , Expressão Gênica , Estudos de Associação Genética , Impressão Genômica , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Miocárdio/metabolismo , Artéria Pulmonar/metabolismo , Adulto Jovem
4.
J Clin Invest ; 124(3): 1364-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509080

RESUMO

The transcriptome is subject to multiple changes during pathogenesis, including the use of alternate 5' start-sites that can affect transcription levels and output. Current RNA sequencing techniques can assess mRNA levels, but do not robustly detect changes in 5' start-site use. Here, we developed a transcriptome sequencing strategy that detects genome-wide changes in start-site usage (5'RNA-Seq) and applied this methodology to identify regulatory events that occur in hypertrophic cardiomyopathy (HCM). Compared with transcripts from WT mice, 92 genes had altered start-site usage in a mouse model of HCM, including four-and-a-half LIM domains protein 1 (Fhl1). HCM-induced altered transcriptional regulation of Fhl1 resulted in robust myocyte expression of a distinct protein isoform, a response that was conserved in humans with genetic or acquired cardiomyopathies. Genetic ablation of Fhl1 in HCM mice was deleterious, which suggests that Fhl1 transcriptional changes provide salutary effects on stressed myocytes in this disease. Because Fhl1 is a chromosome X-encoded gene, stress-induced changes in its transcription may contribute to gender differences in the clinical severity of HCM. Our findings indicate that 5'RNA-Seq has the potential to identify genome-wide changes in 5' start-site usage that are associated with pathogenic phenotypes.


Assuntos
Cardiomiopatia Dilatada/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Região 5'-Flanqueadora , Animais , Cardiomiopatia Dilatada/metabolismo , Células Cultivadas , Códon de Iniciação , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Mutação de Sentido Incorreto , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Análise de Sequência de RNA , Transcriptoma
5.
Biol Open ; 1(9): 874-83, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213481

RESUMO

Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse) and TDGF1 (human ortholog) have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFß signaling, and we show that TGFß signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

6.
Development ; 137(18): 3079-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20702562

RESUMO

Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1(ffe/ffe) mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1(ffe/KI) mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.


Assuntos
Padronização Corporal , Proteínas de Transporte de Cátions/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Alelos , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Técnicas de Cultura Embrionária , Endoderma/metabolismo , Deficiências de Ferro , Camundongos , Mutação , Defeitos do Tubo Neural/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 291(4): L694-702, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16782755

RESUMO

Familial forms of human pulmonary arterial hypertension (FPAH) have been linked to mutations in bone morphogenetic protein (BMP) type II receptors (BMPR2s), yet the downstream targets of these receptors remain obscure. Here we show that pulmonary vascular lesions from patients harboring BMPR2 mutations express high levels of tenascin-C (TN-C), an extracellular matrix glycoprotein that promotes pulmonary artery (PA) smooth muscle cell (SMC) proliferation. To begin to define how TN-C is regulated, PA SMCs were cultured from normal subjects and from those with FPAH due to BMPR2 mutations. FPAH SMCs expressed higher levels of TN-C than normal SMCs. Similarly, expression of Prx1, a factor that drives TN-C transcription, was elevated in FPAH vascular lesions and SMCs derived thereof. Furthermore, Prx1 and TN-C promoter activities were significantly higher in FPAH vs. normal SMCs. To delineate how BMPR2s control TN-C, we focused on receptor (R)-Smads, downstream effectors activated by wild-type BMPR2s. Nuclear localization and phosphorylation of R-Smads was greater in normal vs. FPAH SMCs. As well, indirect blockade of R-Smad signaling with a kinase-deficient BMP receptor Ib upregulated TN-C in normal SMCs. Because ERK1/2 MAPKs inhibit the transcriptional activity of R-Smads, and because ERK1/2 promotes TN-C transcription, we determined whether ERK1/2 inhibits R-Smad signaling in FPAH SMCs and whether this activity is required for TN-C transcription. Indeed, ERK1/2 activity was greater in FPAH SMCs, and inhibition of ERK1/2 resulted in nuclear localization of R-Smads and inhibition of TN-C. These studies define a novel signaling network relevant to PAH underscored by BMPR2 mutations.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Mutação , Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Tenascina/biossíntese
8.
Circ Res ; 94(11): 1507-14, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15117820

RESUMO

Herein, we show that the paired-related homeobox gene, Prx1, is required for lung vascularization. Initial studies revealed that Prx1 localizes to differentiating endothelial cells (ECs) within the fetal lung mesenchyme, and later within ECs forming vascular networks. To begin to determine whether Prx1 promotes EC differentiation, fetal lung mesodermal cells were transfected with full-length Prx1 cDNA, resulting in their morphological transformation to an endothelial-like phenotype. In addition, Prx1-transformed cells acquired the ability to form vascular networks on Matrigel. Thus, Prx1 might function by promoting pulmonary EC differentiation within the fetal lung mesoderm, as well as their subsequent incorporation into vascular networks. To understand how Prx1 participates in network formation, we focused on tenascin-C (TN-C), an extracellular matrix (ECM) protein induced by Prx1. Immunocytochemistry/histochemistry showed that a TN-C-rich ECM surrounds Prx1-positive pulmonary vascular networks both in vivo and in tissue culture. Furthermore, antibody-blocking studies showed that TN-C is required for Prx1-dependent vascular network formation on Matrigel. Finally, to determine whether these results were relevant in vivo, we examined newborn Prx1-wild-type (+/+) and Prx1-null (-/-) mice and showed that Prx1 is critical for expression of TN-C and lung vascularization. These studies provide a framework to understand how Prx1 controls EC differentiation and their subsequent incorporation into functional pulmonary vascular networks.


Assuntos
Endotélio Vascular/citologia , Genes Homeobox , Proteínas de Homeodomínio/fisiologia , Pulmão/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Tenascina/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Células Endoteliais/citologia , Endotélio Vascular/embriologia , Matriz Extracelular/metabolismo , Proteínas de Homeodomínio/genética , Pulmão/anormalidades , Pulmão/embriologia , Mesoderma/citologia , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Tenascina/biossíntese , Tenascina/genética
9.
J Cell Biol ; 161(2): 393-402, 2003 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-12741393

RESUMO

Fibroblast migration depends, in part, on activation of FAK and cellular interactions with tenascin-C (TN-C). Consistent with the idea that FAK regulates TN-C, migration-defective FAK-null cells expressed reduced levels of TN-C. Furthermore, expression of FAK in FAK-null fibroblasts induced TN-C, whereas inhibition of FAK activity in FAK-wild-type cells had the opposite effect. Paired-related homeobox 1 (Prx1) encodes a homeobox transcription factor that induces TN-C by interacting with a binding site within the TN-C promoter, and it also promotes fibroblast migration. Therefore, we hypothesized that FAK regulates TN-C by controlling the DNA-binding activity of Prx1 and/or by inducing Prx1 expression. Prx1-homeodomain binding site complex formation observed with FAK-wild-type fibroblasts failed to occur in FAK-null fibroblasts, yet expression of Prx1 in these cells induced TN-C promoter activity. Thus, FAK is not essential for Prx1 DNA-binding activity. However, activated FAK was essential for Prx1 expression. Functionally, Prx1 expression in FAK-null fibroblasts restored their ability to migrate toward fibronectin, in a manner that depends on TN-C. These results appear to be relevant in vivo because Prx1 and TN-C expression levels were reduced in FAK-null embryos. This paper suggests a model whereby FAK induces Prx1, and subsequently the formation of a TN-C-enriched ECM that contributes to fibroblast migration.


Assuntos
Movimento Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Peroxidases/metabolismo , Proteínas Tirosina Quinases/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Tenascina/metabolismo , Animais , Sítios de Ligação/genética , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Peroxidases/genética , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Tenascina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...